Matsuo et al. 2017 (PRJNA316463)
General Details
Title | Ubiquitination of Stalled Ribosome Triggers Ribosome-associated Quality Control [SET1] |
---|---|
Organism | |
Number of Samples | 12 |
Release Date | 2016/03/25 00:00 |
Sequencing Types | |
Protocol Details |
Study Links
GWIPS-viz | Trips-Viz |
---|---|
Repository Details
SRA | SRP072363 |
---|---|
ENA | SRP072363 |
GEO | GSE79622 |
BioProject | PRJNA316463 |
Publication
Title | |
---|---|
Authors | Matsuo Y, Ikeuchi K, Saeki Y, Iwasaki S, Schmidt C, Udagawa T, Sato F, Tsuchiya H, Becker T, Tanaka K, Ingolia NT, Beckmann R, Inada T |
Journal | Nature communications |
Publication Date | 2017 Jul 31 |
Abstract | Translation arrest by polybasic sequences induces ribosome stalling, and the arrest product is degraded by the ribosome-mediated quality control (RQC) system. Here we report that ubiquitination of the 40S ribosomal protein uS10 by the E3 ubiquitin ligase Hel2 (or RQT1) is required for RQC. We identify a RQC-trigger (RQT) subcomplex composed of the RNA helicase-family protein Slh1/Rqt2, the ubiquitin-binding protein Cue3/Rqt3, and yKR023W/Rqt4 that is required for RQC. The defects in RQC of the RQT mutants correlate with sensitivity to anisomycin, which stalls ribosome at the rotated form. Cryo-electron microscopy analysis reveals that Hel2-bound ribosome are dominantly the rotated form with hybrid tRNAs. Ribosome profiling reveals that ribosomes stalled at the rotated state with specific pairs of codons at P-A sites serve as RQC substrates. Rqt1 specifically ubiquitinates these arrested ribosomes to target them to the RQT complex, allowing subsequent RQC reactions including dissociation of the stalled ribosome into subunits.Several protein quality control mechanisms are in place to trigger the rapid degradation of aberrant polypeptides and mRNAs. Here the authors describe a mechanism of ribosome-mediated quality control that involves the ubiquitination of ribosomal proteins by the E3 ubiquitin ligase Hel2/RQT1. |
PMC | PMC5534433 |
PMID | 28757607 |
DOI |
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SRR3296795 | PRJNA316463 | Saccharomyces cerevisiae | W303_1a | Ribo-Seq | 0.0 | ||||||||
SRR3296796 | PRJNA316463 | Saccharomyces cerevisiae | W303_1a | Ribo-Seq | 0.0 | ||||||||
SRR3296797 | PRJNA316463 | Saccharomyces cerevisiae | W303_1a | Ribo-Seq | 0.0 | ||||||||
SRR3296798 | PRJNA316463 | Saccharomyces cerevisiae | W303_1a | Ribo-Seq | 0.0 | ||||||||
SRR3296799 | PRJNA316463 | Saccharomyces cerevisiae | W303_1a | Ribo-Seq | 0.0 | ||||||||
SRR3296800 | PRJNA316463 | Saccharomyces cerevisiae | W303_1a | Ribo-Seq | 0.0 | ||||||||
SRR3296801 | PRJNA316463 | Saccharomyces cerevisiae | W303_1a | Ribo-Seq | 0.0 | ||||||||
SRR3296802 | PRJNA316463 | Saccharomyces cerevisiae | W303_1a | Ribo-Seq | 0.0 | ||||||||
SRR3296803 | PRJNA316463 | Saccharomyces cerevisiae | W303_1a | Ribo-Seq | 0.0 | ||||||||
SRR3296804 | PRJNA316463 | Saccharomyces cerevisiae | 0.0 | Ribo-Seq | 0.0 | ||||||||
SRR3296805 | PRJNA316463 | Saccharomyces cerevisiae | 0.0 | Ribo-Seq | 0.0 | ||||||||
SRR3296806 | PRJNA316463 | Saccharomyces cerevisiae | 0.0 | Ribo-Seq | 0.0 | ||||||||
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) |
ⓘ For more Information on the columns shown here see: About