Wangen et al. 2020 (PRJNA576649)
General Details
Title | Stop Codon Context Influences Genome-Wide Stimulation of Termination Codon Readthrough by Aminoglycosides [Dataset 1] |
---|---|
Organism | |
Number of Samples | 18 |
Release Date | 2019/10/09 00:00 |
Sequencing Types | |
Protocol Details |
Study Links
GWIPS-viz | Trips-Viz |
---|---|
Repository Details
SRA | SRP224952 |
---|---|
ENA | SRP224952 |
GEO | GSE138638 |
BioProject | PRJNA576649 |
Publication
Title | |
---|---|
Authors | Wangen JR, Green R |
Journal | eLife |
Publication Date | 2020 Jan 23 |
Abstract | Stop codon readthrough (SCR) occurs when the ribosome miscodes at a stop codon. Such readthrough events can be therapeutically desirable when a premature termination codon (PTC) is found in a critical gene. To study SCR in vivo in a genome-wide manner, we treated mammalian cells with aminoglycosides and performed ribosome profiling. We find that in addition to stimulating readthrough of PTCs, aminoglycosides stimulate readthrough of normal termination codons (NTCs) genome-wide. Stop codon identity, the nucleotide following the stop codon, and the surrounding mRNA sequence context all influence the likelihood of SCR. In comparison to NTCs, downstream stop codons in 3'UTRs are recognized less efficiently by ribosomes, suggesting that targeting of critical stop codons for readthrough may be achievable without general disruption of translation termination. Finally, we find that G418-induced miscoding alters gene expression with substantial effects on translation of histone genes, selenoprotein genes, and S- adenosylmethionine decarboxylase (AMD1). © 2020, Wangen and Green. |
PMC | PMC7089771 |
PMID | 31971508 |
DOI |
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SRR10251273 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251274 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251275 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251276 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251277 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251278 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251279 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251280 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251281 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251282 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251283 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251284 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251285 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251286 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251287 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | amikacin | ||||||||
SRR10251288 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | amikacin | ||||||||
SRR10251289 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
SRR10251290 | PRJNA576649 | Homo sapiens | HEK293 | Ribo-Seq | Cycloheximide | ||||||||
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) |
ⓘ For more Information on the columns shown here see: About