Nguyen et al. 2023 (PRJNA937159)

General Details

Title Rapamycin-Induced Feedback Activation of mRNA Translation in Pancreatic Cancer
Organism
Number of Samples 6
Release Date 2023/02/21 00:00
Sequencing Types
Protocol Details

Study Links

Repository Details

SRA SRP423678
ENA SRP423678
GEO GSE225683
BioProject PRJNA937159

Publication

Title
Authors Nguyen TU,Hector H,Pederson EN,Lin J,Ouyang Z,Wendel HG,Singh K
Journal Cancers
Publication Date 2023 Feb 24
Abstract Pancreatic cancer cells adapt molecular mechanisms to activate the protein synthesis to support tumor growth. This study reports the mTOR inhibitor rapamycin's specific and genome-wide effect on mRNA translation. Using ribosome footprinting in pancreatic cancer cells that lack the expression of 4EBP1, we establish the effect of mTOR-S6-dependent mRNAs translation. Rapamycin inhibits the translation of a subset of mRNAs including p70-S6K and proteins involved in the cell cycle and cancer cell growth. In addition, we identify translation programs that are activated following mTOR inhibition. Interestingly, rapamycin treatment results in the translational activation of kinases that are involved in mTOR signaling such as p90-RSK1. We further show that phospho-AKT1 and phospho-eIF4E are upregulated following mTOR inhibition suggesting a feedback activation of translation by rapamycin. Next, targeting eIF4E and eIF4A-dependent translation by using specific eIF4A inhibitors in combination with rapamycin shows significant growth inhibition in pancreatic cancer cells. In short, we establish the specific effect of mTOR-S6 on translation in cells lacking 4EBP1 and show that mTOR inhibition leads to feedback activation of translation via AKT-RSK1-eIF4E signals. Therefore, targeting translation downstream of mTOR presents a more efficient therapeutic strategy in pancreatic cancer.
PMC PMC10001351
PMID 36900235
DOI
Run Accession Study Accession Scientific Name Cell Line Library Type Treatment GWIPS-viz Trips-Viz Reads BAM BigWig (F) BigWig (R)
SRR23563667 PRJNA937159 Homo sapiens PANC1
SRR23563666 PRJNA937159 Homo sapiens PANC1
SRR23563665 PRJNA937159 Homo sapiens PANC1
SRR23563664 PRJNA937159 Homo sapiens PANC1
SRR23563663 PRJNA937159 Homo sapiens PANC1
SRR23563662 PRJNA937159 Homo sapiens PANC1
Run Accession Study Accession Scientific Name Cell Line Library Type Treatment GWIPS-viz Trips-Viz Reads BAM BigWig (F) BigWig (R)

ⓘ For more Information on the columns shown here see: About