Wiita et al. 2013 (PRJNA211752)
General Details
Title | Global response to chemotherapy-induced apoptosis |
---|---|
Organism | |
Number of Samples | 6 |
Release Date | 2013/07/11 00:00 |
Sequencing Types | |
Protocol Details |
Study Links
GWIPS-viz | Trips-Viz |
---|---|
Visit GWIPS-viz |
Repository Details
SRA | SRP027015 |
---|---|
ENA | SRP027015 |
GEO | GSE48785 |
BioProject | PRJNA211752 |
Publication
Title | |
---|---|
Authors | Wiita AP,Ziv E,Wiita PJ,Urisman A,Julien O,Burlingame AL,Weissman JS,Wells JA |
Journal | eLife |
Publication Date | 2013 Oct 29 |
Abstract | How cancer cells globally struggle with a chemotherapeutic insult before succumbing to apoptosis is largely unknown. Here we use an integrated systems-level examination of transcription, translation, and proteolysis to understand these events central to cancer treatment. As a model we study myeloma cells exposed to the proteasome inhibitor bortezomib, a first-line therapy. Despite robust transcriptional changes, unbiased quantitative proteomics detects production of only a few critical anti-apoptotic proteins against a background of general translation inhibition. Simultaneous ribosome profiling further reveals potential translational regulation of stress response genes. Once the apoptotic machinery is engaged, degradation by caspases is largely independent of upstream bortezomib effects. Moreover, previously uncharacterized non-caspase proteolytic events also participate in cellular deconstruction. Our systems-level data also support co-targeting the anti-apoptotic regulator HSF1 to promote cell death by bortezomib. This integrated approach offers unique, in-depth insight into apoptotic dynamics that may prove important to preclinical evaluation of any anti-cancer compound. DOI:http://dx.doi.org/10.7554/eLife.01236.001. |
PMC | PMC3808542 |
PMID | 24171104 |
DOI |
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SRR931815 | PRJNA211752 | Homo sapiens | MM1S | Ribo-Seq | Cycloheximide | ||||||||
SRR931817 | PRJNA211752 | Homo sapiens | MM1S | Ribo-Seq | Cycloheximide | ||||||||
SRR931819 | PRJNA211752 | Homo sapiens | MM1S | Ribo-Seq | Cycloheximide | ||||||||
SRR931821 | PRJNA211752 | Homo sapiens | MM1S | Ribo-Seq | Cycloheximide | ||||||||
SRR931823 | PRJNA211752 | Homo sapiens | MM1S | Ribo-Seq | Cycloheximide | ||||||||
SRR931825 | PRJNA211752 | Homo sapiens | MM1S | Ribo-Seq | Cycloheximide | ||||||||
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) |
ⓘ For more Information on the columns shown here see: About