Werner et al. 2015 (PRJNA263582)
General Details
Title | Cell fate determination by ubiquitin-dependent regulation of translation |
---|---|
Organism | |
Number of Samples | 23 |
Release Date | 2014/10/10 00:00 |
Sequencing Types | |
Protocol Details |
Study Links
GWIPS-viz | Trips-Viz |
---|---|
Visit GWIPS-viz | Visit Trips-Viz |
Repository Details
SRA | SRP048825 |
---|---|
ENA | SRP048825 |
GEO | GSE62247 |
BioProject | PRJNA263582 |
Publication
Title | |
---|---|
Authors | Werner A,Iwasaki S,McGourty CA,Medina-Ruiz S,Teerikorpi N,Fedrigo I,Ingolia NT,Rape M |
Journal | Nature |
Publication Date | 2015 Sep 24 |
Abstract | Metazoan development depends on the accurate execution of differentiation programs that allow pluripotent stem cells to adopt specific fates. Differentiation requires changes to chromatin architecture and transcriptional networks, yet whether other regulatory events support cell-fate determination is less well understood. Here we identify the ubiquitin ligase CUL3 in complex with its vertebrate-specific substrate adaptor KBTBD8 (CUL3(KBTBD8)) as an essential regulator of human and Xenopus tropicalis neural crest specification. CUL3(KBTBD8) monoubiquitylates NOLC1 and its paralogue TCOF1, the mutation of which underlies the neurocristopathy Treacher Collins syndrome. Ubiquitylation drives formation of a TCOF1-NOLC1 platform that connects RNA polymerase I with ribosome modification enzymes and remodels the translational program of differentiating cells in favour of neural crest specification. We conclude that ubiquitin-dependent regulation of translation is an important feature of cell-fate determination. |
PMC | PMC4602398 |
PMID | 26399832 |
DOI |
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SRR1610244 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610245 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610246 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610247 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610248 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610249 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610250 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610251 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610252 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610253 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610254 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610255 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610256 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610257 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610258 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR1610259 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR2086025 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR2086026 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR2086027 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR2086028 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR2086029 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR2086030 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
SRR2086031 | PRJNA263582 | Homo sapiens | H1 | Ribo-Seq | |||||||||
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) |
ⓘ For more Information on the columns shown here see: About