Tuck et al. 2020 (PRJNA553494)
General Details
Title | Mammalian RNA decay pathways are highly specialized and widely linked to translation |
---|---|
Organism | |
Number of Samples | 24 |
Release Date | 2019/07/09 00:00 |
Sequencing Types | |
Protocol Details |
Study Links
GWIPS-viz | Trips-Viz |
---|---|
Repository Details
SRA | SRP213860 |
---|---|
ENA | SRP213860 |
GEO | GSE134020 |
BioProject | PRJNA553494 |
Publication
Title | |
---|---|
Authors | Tuck AC,Rankova A,Arpat AB,Liechti LA,Hess D,Iesmantavicius V,Castelo-Szekely V,Gatfield D,Bühler M |
Journal | Molecular cell |
Publication Date | 2020 Mar 19 |
Abstract | RNA decay is crucial for mRNA turnover and surveillance and misregulated in many diseases. This complex system is challenging to study, particularly in mammals, where it remains unclear whether decay pathways perform specialized versus redundant roles. Cytoplasmic pathways and links to translation are particularly enigmatic. By directly profiling decay factor targets and normal versus aberrant translation in mouse embryonic stem cells (mESCs), we uncovered extensive decay pathway specialization and crosstalk with translation. XRN1 (5'-3') mediates cytoplasmic bulk mRNA turnover whereas SKIV2L (3'-5') is universally recruited by ribosomes, tackling aberrant translation and sometimes modulating mRNA abundance. Further exploring translation surveillance revealed AVEN and FOCAD as SKIV2L interactors. AVEN prevents ribosome stalls at structured regions, which otherwise require SKIV2L for clearance. This pathway is crucial for histone translation, upstream open reading frame (uORF) regulation, and counteracting ribosome arrest on small ORFs. In summary, we uncovered key targets, components, and functions of mammalian RNA decay pathways and extensive coupling to translation. Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved. |
PMC | PMC7083229 |
PMID | 32048998 |
DOI |
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SRR9693934 | PRJNA553494 | Mus musculus | Ribo-Seq | ||||||||||
SRR9693935 | PRJNA553494 | Mus musculus | Ribo-Seq | ||||||||||
SRR9693936 | PRJNA553494 | Mus musculus | Ribo-Seq | ||||||||||
SRR9693937 | PRJNA553494 | Mus musculus | Ribo-Seq | ||||||||||
SRR9693938 | PRJNA553494 | Mus musculus | Ribo-Seq | ||||||||||
SRR9693939 | PRJNA553494 | Mus musculus | Ribo-Seq | ||||||||||
SRR9693940 | PRJNA553494 | Mus musculus | Ribo-Seq | ||||||||||
SRR9693941 | PRJNA553494 | Mus musculus | Ribo-Seq | ||||||||||
SRR9693966 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693967 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693968 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693969 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693970 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693971 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693972 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693973 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693974 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693975 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693976 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693977 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693978 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693979 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693980 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
SRR9693981 | PRJNA553494 | Mus musculus | RNA-Seq | ||||||||||
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) |
ⓘ For more Information on the columns shown here see: About