Chen et al. 2020 (PRJNA625261)
General Details
Title | Dual targeting of DDX3 and eIF4A by the translation inhibitor rocaglamide A |
---|---|
Organism | |
Number of Samples | 16 |
Release Date | 2020/04/14 00:00 |
Sequencing Types | |
Protocol Details |
Study Links
GWIPS-viz | Trips-Viz |
---|---|
Repository Details
SRA | SRP256332 |
---|---|
ENA | SRP256332 |
GEO | GSE148636 |
BioProject | PRJNA625261 |
Publication
Title | |
---|---|
Authors | Chen M, Asanuma M, Takahashi M, Shichino Y, Mito M, Fujiwara K, Saito H, Floor SN, Ingolia NT, Sodeoka M, Dodo K, Ito T, Iwasaki S |
Journal | Cell chemical biology |
Publication Date | 2021 Apr 15 |
Abstract | The translation inhibitor rocaglamide A (RocA) has shown promising antitumor activity because it uniquely clamps eukaryotic initiation factor (eIF) 4A onto polypurine RNA for selective translational repression. As eIF4A has been speculated to be a unique target of RocA, alternative targets have not been investigated. Here, we reveal that DDX3 is another molecular target of RocA. Proximity-specific fluorescence labeling of an O-nitrobenzoxadiazole-conjugated derivative revealed that RocA binds to DDX3. RocA clamps the DDX3 protein onto polypurine RNA in an ATP-independent manner. Analysis of a de novo-assembled transcriptome from the plant Aglaia, a natural source of RocA, uncovered the amino acid critical for RocA binding. Moreover, ribosome profiling showed that because of the dominant-negative effect of RocA, high expression of eIF4A and DDX3 strengthens translational repression in cancer cells. This study indicates that sequence-selective clamping of DDX3 and eIF4A, and subsequent dominant-negative translational repression by RocA determine its tumor toxicity. Copyright © 2020 Elsevier Ltd. All rights reserved. |
PMC | PMC8052261 |
PMID | 33296667 |
DOI |
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SRR11542141 | PRJNA625261 | Homo sapiens | NCIH1650 | Ribo-Seq | Cycloheximide | ||||||||
SRR11542142 | PRJNA625261 | Homo sapiens | NCIH1650 | Ribo-Seq | Cycloheximide | ||||||||
SRR11542143 | PRJNA625261 | Homo sapiens | NCIH520 | Ribo-Seq | Cycloheximide | ||||||||
SRR11542144 | PRJNA625261 | Homo sapiens | NCIH520 | Ribo-Seq | Cycloheximide | ||||||||
SRR11542145 | PRJNA625261 | Homo sapiens | Hs936T | Ribo-Seq | Cycloheximide | ||||||||
SRR11542146 | PRJNA625261 | Homo sapiens | Hs936T | Ribo-Seq | Cycloheximide | ||||||||
SRR11542147 | PRJNA625261 | Homo sapiens | A375 | Ribo-Seq | Cycloheximide | ||||||||
SRR11542148 | PRJNA625261 | Homo sapiens | A375 | Ribo-Seq | Cycloheximide | ||||||||
SRR11542149 | PRJNA625261 | Homo sapiens | NCIH1650 | Ribo-Seq | Cycloheximide | ||||||||
SRR11542150 | PRJNA625261 | Homo sapiens | NCIH1650 | Ribo-Seq | Cycloheximide | ||||||||
SRR11542151 | PRJNA625261 | Homo sapiens | NCIH520 | Ribo-Seq | Cycloheximide | ||||||||
SRR11542152 | PRJNA625261 | Homo sapiens | NCIH520 | Ribo-Seq | Cycloheximide | ||||||||
SRR11542153 | PRJNA625261 | Homo sapiens | Hs936T | Ribo-Seq | Cycloheximide | ||||||||
SRR11542154 | PRJNA625261 | Homo sapiens | Hs936T | Ribo-Seq | Cycloheximide | ||||||||
SRR11542155 | PRJNA625261 | Homo sapiens | A375 | Ribo-Seq | Cycloheximide | ||||||||
SRR11542156 | PRJNA625261 | Homo sapiens | A375 | Ribo-Seq | Cycloheximide | ||||||||
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) |
ⓘ For more Information on the columns shown here see: About