Authors |
Pallarés HM, González López Ledesma MM, Oviedo-Rouco S, Castellano LA, Costa Navarro GS, Fernández-Alvarez AJ, D'Andreiz MJ, Aldas-Bulos VD, Alvarez DE, Bazzini AA, Gamarnik AV |
Abstract |
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that causes severe outbreaks in human populations. ZIKV infection leads to the accumulation of small non-coding viral RNAs (known as sfRNAs) that are crucial for evasion of antiviral responses and for viral pathogenesis. However, the mechanistic understanding of how sfRNAs function remains incomplete. Here, we use recombinant ZIKVs and ribosome profiling of infected human cells to show that sfRNAs block translation of antiviral genes. Mechanistically, we demonstrate that specific RNA structures present in sfRNAs trigger PKR activation, which instead of limiting viral replication, enhances viral particle production. Although ZIKV infection induces mRNA expression of antiviral genes, translation efficiency of type I interferon and interferon stimulated genes were significantly downregulated by PKR activation. Our results reveal a novel viral adaptation mechanism mediated by sfRNAs, where ZIKV increases its fitness by repurposing the antiviral role of PKR into a proviral factor. © The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research. |