Shi et al. 2017 (PRJNA297039)
General Details
Title | Heterogeneous ribosomes exist and selectively translate distinct subpools of mRNAs in stem cells |
---|---|
Organism | |
Number of Samples | 12 |
Release Date | 2015/09/23 00:00 |
Sequencing Types | |
Protocol Details |
Study Links
GWIPS-viz | Trips-Viz |
---|---|
Repository Details
SRA | SRP064202 |
---|---|
ENA | SRP064202 |
GEO | GSE73357 |
BioProject | PRJNA297039 |
Publication
Title | |
---|---|
Authors | Shi Z, Fujii K, Kovary KM, Genuth NR, Röst HL, Teruel MN, Barna M |
Journal | Molecular cell |
Publication Date | 2017 Jul 6 |
Abstract | Emerging studies have linked the ribosome to more selective control of gene regulation. However, an outstanding question is whether ribosome heterogeneity at the level of core ribosomal proteins (RPs) exists and enables ribosomes to preferentially translate specific mRNAs genome-wide. Here, we measured the absolute abundance of RPs in translating ribosomes and profiled transcripts that are enriched or depleted from select subsets of ribosomes within embryonic stem cells. We find that heterogeneity in RP composition endows ribosomes with differential selectivity for translating subpools of transcripts, including those controlling metabolism, cell cycle, and development. As an example, mRNAs enriched in binding to RPL10A/uL1-containing ribosomes are shown to require RPL10A/uL1 for their efficient translation. Within several of these transcripts, this level of regulation is mediated, at least in part, by internal ribosome entry sites. Together, these results reveal a critical functional link between ribosome heterogeneity and the post-transcriptional circuitry of gene expression. Copyright © 2017 Elsevier Inc. All rights reserved. |
PMC | PMC5548184 |
PMID | 28625553 |
DOI |
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SRR2518205 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
SRR2518206 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
SRR2518207 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
SRR2518208 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
SRR2518209 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
SRR2518210 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
SRR2518211 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
SRR2518212 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
SRR5453819 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
SRR5453820 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
SRR5453821 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
SRR5453822 | PRJNA297039 | Mus musculus | E14 | Ribo-Seq | 0.0 | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
||
Run Accession | Study Accession | Scientific Name | Cell Line | Library Type | Treatment | GWIPS-viz | Trips-Viz | Reads | BAM | BigWig (F) | BigWig (R) |
ⓘ For more Information on the columns shown here see: About